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Abstract  

The Euler-Lagrange equation derived from Schwinger's action principle (1951) has been 
shown by Kiang et al. (1969) and Lin et al. (I970) to lead to inconsistencies for quadratic 
lagrangians of the form 

E(/I, q) = ½illgik(q)O k - V(q) 

except in the Euclidean case gjk -~ 6]k, This inadequacy is linked to Schwinger's specifica- 
tion that the variations of operators be c-numbers. We reformulate the action principle by 
introducing the concept of 'proper' Gauteaux variation of operators to find the most 
general class of admissible variation consistent with the postulated quantisation rules. 
This new action principle, applied to the Lagrangian L, yields a quantum Euler equation 
consistent with the Hamflton-Heisenberg equations. 

1. In troduct ion 

Various types of classical variational principles~ (V.P.) have been designed 
since the 'principle of least action' was put forward by Maupertuis (I744) 
two centuries ago. However, by far the most important V.P. are the two formu- 
lated mainly by Hamilton (1834, 1835). In the traditional coordinate notation 
where O k = (d /d t )q  k, the principle involves the action integrals 

t pt 

J (¢ l ,  q )=  f L ( 4 , q ,  0 ( t .1)  
t '  

and 

t ~ 

~gd(q,  p ) = f 6ok~ k - / t (q,  p, t)) dt (1.2) 
t '  
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What is commonly referred to a Hamilton action principlet is precisely speci- 
fied by 

8 d  (~, q;Sq, ~q) = 0 (1.3) 

where fi J is the Gauteaux variation 7~ whicil isthe limit, as e --> 0, of 

e - l ( d ( / 1  + e6/1, q + e6q) - d(/1, q)) 

the variations 8il and ~iq being classically constrained by 

6/1 = (did 0 6q (1.4) 

and 

5q(t') = 6q(t") = 0 (1.5) 

This V.P. yields the Euler-Lagrange equation 

d aL ~L 
dt Oft k - ~qg = O, k = 1 , . . . ,  N (Classical) (1.6) 

On the other hand the specification that 

J l d ( q  + e fiq, p + e 6p) - ~ ¢ d  (q, p) 
6 J t ' d ( q ,  p;Sq, 6p) = lim 

e~O e 

= 0 ( 1 . 7 )  

subject to the vanishing of the variations at the end-points 

6q(t') = 6p(t') = 8q(t") = 6p(t") = 0 (1.8) 

and the independence of 6q and 5p which V.P. is referred to as the modified 
Hamilton principle § yields the canonical (Hamilton) equations 

dqg/dt = on/apg (1.9) 

dpg/dt  = -aH/Op k (1.10) 

and hence 

dH/dt = bH/bt (1.11) 

Of interest to this discussion of the quantum V.P. is what we would call the 
'modified Hamilton homogeneous action principle' [[ which yields equations 
(1.9), (1.10) and (1.11). For this V.P. one defines a linear functional ~" 

~ ' (q ,  t, p) = f (pkdq k - H ( q ,  p, t) dt)  (1.12) 
S ~ 

t See, for example, Leech (1968) and Goldstein (1970), p. 58 and p. 30, respectively. 
For further discussion on the Gauteaux variation see, for example, Sagan (1969). 

§ See, for example, Leech (1968) and Goldstein (1970), p. 58 and p. 225, respectively. 
II Cf. Mercier (1963), pp. 166 and 190. 
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and requires thatffhave vanishing Gauteaux variation for independent variations 
8q, 5p and fit which vanish at end-points s' and s". 

Although variational methods have been extensively used in quantum 
mechanics,t the development of the quantum analogues of these three action 
principles was overlooked prior to the classic work of Schwinger (1951, 1953, 
1970). Schwinger dealt with operator lagrangians, but he simplified the dis- 
cussion by requiring that such variations as f q, 6 c~, 6 p and 8 t commute with 
all other operators. The major achievements of Schwinger (1953, 1970)was 
his derivation of the canonical commutation relations via the modified 
Hamilton homogeneous action principle. However, Kiang et  aL (1969) and 
I.in et  al. (1970) were able to show that for the iagrangian 

ff,(q, ~1) = ½(lJgj~(q)gff -" V(q) (1.13) 

the equations of motion deduced by Schwinger (195 t), 

d 3 E  3 E  
d t  3gl k - 3q ti = 0 (Schwinger) (I .14) 

(refinements involving left- and right-handed derivatives are irrelevant) were 
in general inconsistent with the Hamilton-Heisenberg equations, 

dq k dpk  
ih -g-= [qL#], -y/= [pk,  (1.t5) 

for ~q as given by Schwinger (1953, 1970) 

~q = ½{Px, 0 x} - / S  (Schwinger) (I .16) 

and Pk defined as 3L/_.Ogl k. Lin et  at. (1970) showed that it was not, for example, 
sufficient to replace H by some other form, perhaps differing from E r by a 
function of q. However, Linet al. (1970) were able to suggest an appropriate 
modification: they restricted their discussion to the case of zero curvature 
(R = 0) so that an algebraic transformation to 'euclidean coordinates' for 
which g]k = 6]k was possible, to find as a consistent modification 

d 3L 3L 
dt  3gl k - 3q 7i = Qk (1.17) 

where the discrepancy term Qk has two components 

Qk = Ak +Z,k (1.18) 

where we denote the partial derivatives with respect to qk by ,k. One has 

1 a/S 
Ak = ~h [L- 'Pk]-  i'h [ ½ { P m ' g l m } ' P k ]  - (1.19) 3q x 

from which one deduced directly that 
1 2 j t  m n  Ak = z~h (g gjm,l),ng, k (1.20) 

t See, for instance, Yourgrau & Mandelstam (1972). 
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whilst Z was determined by Linet  aL (1970) to be 
_ l ~ , 2 ~ / k p r n  z -  4 -  ~ l i . rf~m (1.21) 

The significance of Z was that it gave the 'error' term in H, so that in the case 
considered Linet  at. (1970) found 

= ½ {Pk, O k } - Z - L" (case R = 0) (1.22) 

Since the paper by Linet  al. (1970), a number of papers by Sugano and his 
co-workers (Sugano (1971), Kimura (1972) and Ohtani (1972)) have been 
directed towards the task of deducing the quantum-Euler-Lagrange from an 
action principle involving operator variations. However, because of the 
excessive restri?tions imposed on the q-number variations qk, their formula- 
tions are seriously defective, as we have shown elsewhere (Cohen & Shaharir, 
1973). Another very ad hoc approach to the consistency issue was made by 
Kawai (1972, 1973), who added arbitrary terms to the lagrangian L-so that 
the Euler-Lagrange equation was maintained in the form given by Schwinger. 

In this paper we formulate a general q-number variational principle for the 
action integral (I.1) where the integrand is a lagrangian operator defined by 

L(q, el, t) = ½(ft j -A)(q))glk(q)(O k - -Ak(q))  -- V(q, t) (1.23) 

being a generalisation of/~ 
In Section 2, the general concept of q-number variation is defined in terms 

of Gauteaux variation. It is shown that the trivial extension of the classical 
Gauteaux variations leads to restrictions on 8q k, a q-number variation in the 
commutative coordinate operators qk(k = 1 . . . .  , N), such that the com- 
mutator 8q I with qk is an operator independent of/1, 

[qk, 6qj] = ihfljX (q, t) (I.24) 

Further properties of/3 jx are derived in Lemma 2. An elementary identity for 
a twice differentiable vector field v is derived in Lemma 3, an important result 
which will be used in the later section, 3. 

In Section 3 an admissible variational principle is formulated in which the 
vector operator 8q satisfies equation (1.24) and the other properties derived 
in Section 2. The discussion utilises a lagrangian L, defined in equation (1.23), 
which describes the motion of a point particle influenced by a 'magnetic 
potential' in addition to a scalar potential in a N-dimensional Riemannian 
space of arbitrary curvature. It is assumed that Pk, the partial derivative 
OL/~gl x of operator L with respect to qk, satisfies the commutation relation, 

[qJ, Pk] = ihSk j (1.25) 

[Pi, Pk] = 0 = [ql, qm] (1.26) 

To determine the Euler-Lagrange equation for the quadratic lagrangian L, 
the double commutator [[Sq j, gffl, 0 l] is needed, this double commutator 
being derived directly from our definition of the admissible Gauteaux variation 
and equations (1.25)-(1.26). However at no stage do we specify the commutator 
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[6q J, cff] (as was done by Sugano (1971), Kimura-Sugano (1972) and Ohtani 
et aI. (1972), in view of the result shown elsewhere (Cohen & Shaharir (1973) 
that such a specification is excessively restrictive and leads to contradictions. 
The Euler-Lagrange equation deduced, is in the special cases considered by 
Lin et al. where L = L and R = 0, the same as equation (i .  17). 

In Section 4 the results obtained in Sections 2 and 3 are discussed. 

2. Preliminary 

Following the definition of the classical Gauteaux variation, we define f- 
variation on an operator O(q) which is a function of a set of commutative 
coordinate operators qk (k = 1 . . . .  , N) by the limit 

60(q ;6q)  = lim O(q + e 6q) - O(q) (2.1) 
e-~O 6 

We will also assume the following 'derivative properties': 

1 fW(q)  o k/ 
(a) 60(q ;6q)  = ~- t - -~qk ,  oq j (2.2) 

where {A, B} denotes the anti-commutator, AB + BA, and the partial 
derivative O0(q)/Oq k or O,k(q) is defined in the usual way. 

O,k(q) = OO(q) _ lira O(q +o)  - O(q) (2.3) 
~q---T - ~-~o II ~ [1 

in which the vector o is a c-number whose component is non-zero at the kth 
position, and II tl is the euclidean norm. 

(b) 6(AB) (q ;6q)=½{A(q) ,6B(q;6q)}+½(B(q) ,6A(q;6q)}  (2.4) 

where A and B are any operator functions of q. 
Consequently, there exists a class of admissible variation 6q, on the 

coordinate operator q. Consider the particular operator given by O(q) = q3, 
for which 

60(q ;6q)  = 6qq 2 + q2 6q + q 6qq 

= ½ {6q, 3q 2} + ½ [[q, 6q], q] 

where [A, B] denotes the commutator AB - BA. In this case it is clear that 
equation (2.2) is valid if and only if the commutator of 6q with q is a 
function of q and possibly t. More generally, it is possible to show (by 
induction) that the condition 

[q], 6q k] = ihfiik(q, t) (2.5) 

is necessary and sufficient for the validity of equation (2.2), for all 'analytic' 
operators O(q). Furthe%j byx applying the definition of the 6-variation' to the 
particular functional [q ,  q ], we can deduce the symmetric property of f3J k. 
The following result is trivial. 
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Lemma 1. Equations (2.1) and (2.2) imply equation (2.4) provided (if and 
only if) 6q satisfies equation (2.5). 

Equation (2.5) implies that 6q is linear in some variables Pk (k = 1 , . . . ,  N), 
the momentum operator which is canonical to the coordinate q. Thus we write 

@i = d(q,  t) + ½ {/3JR(q, t), Pk} (2.6) 

where 

[Pk, Pj] = O, [qJ, Pk] = ih 5~ (2.7) 

The variation on the space of operators F(q, q) which depend on a 
coordinate operator q and a velocity operator fl is defined in a similar manner. 
Thus by assuming equation (1.4), we have 

6F ,¢~;3q,~t 5 = lim (2.8) 
e ~ 0  e 

where 5q is assumed to satisfy the commutation relation (2.5). However, since 
q and fl are non-commutative operators, further conditions on 6q are expected, 
so that the definition (2.8) is meaningful. Thus we obtain the following lemma. 

Lemma 2. Suppose q, the velocity operator, and p, the momentum 
operator, are related by an equation 

Pj = ½ {O k - Ak(q), g/k(q)} 

where det (gjk) --/: 0, then operators aJ and ~jk defined by equations (2.6) and 
(2.8) satisfy the following equations: 

(a) m - = o 

d + 3~ jk (b) gklo~!l okra J ± _jt^.k _ ~jt A5 + 131l ~At -- g].P = 0 - - p  ~ , l T g  tX, l 
' ' ' dt 

Proof. The results follow from the uniqueness of ~([qJ, Ok]), and equating 
coefficients of PR. Q.E.D. 

The following result will also be used in Section 3. 

Lemma 3. Let v ] be a component of a vector field in a riemannian space 
whose metric tensor is glR. Then provided v j is twice differentiable, it satisfies 
the equation 

j R  l j R  m n l 1 m n j + 2g k I'}nPlcmV;l 2gjmp]kVk:ml g )  v,/k = (g I')nrRm),lv - , 

where P~l is the usual Christoffel symbol. 

Proof. By definitions of the eovariant derivative, 

v~i=vl~- F/mV m 
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Similarly 
v l j k  t l m m t I n t m _ F ] m V ; k  1 m 

= - rm/,k)v V;itc --  F k m V ; ]  + P ;kV;m  + ( F ] n F k m  

Thus 
]k 1 j k  l j k  I m n j k  l rt 1 m 

= +g~,l ( P j n P k m  Pmj ,  k )  v g;1 v,]~ g3 V;ik + 2g PjmP~nV;k -- (L3.1) 

where use has been made of the relation 

~ = _ g k m  pJrn I _ 6"jm pkx tm (L3.2) 

By using the definition of the Riemann curvature tensor R£tm, 

R~tm i ] / n i n (L3.3) = - -Pk l ,  m + P k m ,  l - -  F m n F k l  + P l n F k m  

and (L3.2), we obtain 

g,jkrrl r , n  --PL/,k) "k t n /'k t (L3.4) l k X j n X k m  = (gl p)nPkl), m +g,l Rjmk 

By similar calculation, and use of the relation 

v{m i Y m (L3.5) - -  V;ttc = R m l k V  

we deduce 

i k 1 = _2gikp~nVn/m _ g~Jk'-'nnlljll~mk n vm (L3.6) g,z v;ik 

Using the results in (L3.4) and (L3.6), together with the identity 

R~lm + Rimk + R~kz = 0 (L3.7) 

we obtain the required result. Q.E.D. 

3. Formulation o f  a q-Number Variational Principle 

Consider a model of a dynamical system whose lagrangian operator, L, is 
defined by 

L(q, (t, t) = ½((l j -AJ(q))gjk(q)( i l  k - Ak(q)) - V(q, t) (3.1) 

where q and q ( - dq /d t )  are coordinate operators and velocity operators 
respectively. (All operators are assumed to be hermitian.) Classically the 
lagrangian L may be thought of as representing the motion of a point particle 
in an N dimensional riemannian space endowed by the metric tensor gjk, in 
the presence of a magnetic potential A and an external potential 
W = Lt(h  ~ O) V. 

The partial derivative OL/Oq k (k = 1 . . . . .  N) of L with respect to qk will 
be assumed to form a set of variables Pk (k = 1 , . . . ,  N), the momentum 
operators, which are canonical to qk (k = 1 . . . .  , N), i.e. 

3L = ½ {gjk, (t j - A J} = Pk (3.2) Oq k 

[qJ, Pk] =/ 'h~  (3,3) 
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[q j, qtC] = 0 

[pk, PA = o 

We assume that there is an action integral (operator) d defined by 

(3.4) 

(3.5) 

(q, 4) = ~ r(q, 4, t) at  
t '  

(3.6) 

which contains all the information of the dynamical system during the time 
interval t '  to t". In other words the variation 6(d', did",  t") of the 'trans- 
formation function' (d', t ' ld",  t") (inner product between two Dirac states 
(d', t ' l  and ld", t")) is (i/h)(d', t' I~d ld" ,  t"). Following Schwinger (1953, 
1970), we postulate that 

i t' ~(d ' , t ' l= - -~ (d ' ,  IJ(t ') (3.7) 

6 I d", t") = + ~ J(t") [ d", t") (3.8) 

so that 

5 d = J(t") - J(t') (3.9) 

where J is a hermitian operator. 
We define the variation 6 d in the operator d as an admissible Gauteaux 

variation of d given by 

6 d  q, 4 ; S q , ~ 6 q  = lim 
~-+0 

d ( q + e ~ q ,  4 + e d 6 q ) - J ( q ,  q) 

(3.10) 

where we have implicitly assumed equation (1.4) and more unportantly 

6q ] = aJ(q, t) + l~(t)~Jg(q),  Pk} (3.11) 

Physically, the admissible variation (3.11) is quite natural for it may be 
conceived as the total infinitesimal change in q generated by an infinitesimal 
spatial-time translation and rotational translation. However, our assumption in 
(3.11) is motivated by the results obtained in Section 2. (Note that 8q t in 
(3.11) satisfies (2.5) and Lemma 2.) 

Now by definition (3.10), 



where 

to 

where 

and 
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t '  

t' 

t rl 

t"  

t "  

g 

t "  

t '  
t ¢1 

- - f  8V(q;Sq)dt 
t'  
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(3.12) 

X J ( q ,  ( t )  = il i - AJ(q) (3.13) 
By using equations (2.1), (2.2) and (2.3) equation (3.12) may be reduced 

t II 

6 d 

t "  

+ f ¼ ( C + D - E ) d t  
t' 

(3.14) 

i ] c = ~ ~qJ, [gjk, x q  

D =X]g]k,t[6qZ, X k] + [X k, 6qqgik, lX] 

(3.15) 

(3.16) 

E =A]k [6qk, &tXt] + [Xtg/l, ~qklAJk (3.17) 



(a) 
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Now using equations (3.2)-(3.5), (3.1 t) and (3.13) we deduce the following 
commutation relations: 

[aq j, Xx] = i'hggt~l +~- ~Pn, Oitcn) (3.18) z 

O/k. = [3(O(gk~ g[~ _ g]tglf, ff) (3.19) 

2 rn n j "h2 f~ almAjkn n " (b) [X t, [6qi, Xk]] -h- gl ( ~  ce, n), m + 2  u'~n' ~ %m - gm Olkm} 
(3.20) 

These results are used to simplify C, D and E defined earlier. Thus we deduce 

C= h2 (g]k gll, k ),mgrnnaln -- ¢tZ [J(t)gtn(gik glLk ),mA,~ 
~ 2  

n d ~ ( ~ )  + h2/3(t)j,n jk m ]k (g glLk)'nA +-2 (g  glJ'k)'ngl dt  

.h2 ]k lmn m s +__ (p. ,  (g gtj, k),m( 0 + ~( t )g  s gn )) (3.21) 
2 

where use has also been made of the relation 

dO(q, t) _ 1 [30(q,~ t),  eft} + BO(q, t____)) (3.22) 
dt  2 ( oq , at 

Similarly, after some simplification, we obtain 

D = --h2 g]k al]k + h2 (glm g]m,1),kg]n akn 

,h 2 m k'n ..rnn a k]la m kin +--Qgn,gjm, k(g l 0,:[ - ~,t u I +gmLkl(g l 0 --gnmokJl)) 
2 (3.23) 

and 

2 m tc (3.24) E = - h  ~(t)~,k A,1 m +h2~(t)g3m(g]k g]n,k),mA,nl 

Thus 

C + D - E = h2 (g]gg]m, k), l ( gtna~ -- {3(t)glnA,mn + gmn~n - [3(t)grnnA~n 
$ 

\ 

d~(O]+ f t m jk Sg +~(t)g(mAn +glm at  ] 2 ((p.,fi()gn },g;m~ ~m),k) 

_¢~(~. k . 4 ?  
- {3(t)Atn)~k +--~ {P., F n} (3.25) 

where 

Fn = gm],k L(g dm Okin,l - -  ~,l n ok]l) + gmL kl(glrn oMn -- gmn ok]l) 

f~]k g "~ omln + ~s mi, k.',l (3.26) 
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But by Lemma 2 (Section 2), we have a relation 

gjt .k ~ , + j < ,~ ! ,  _ g f ~ ,  + gS~ d~(t) = o 
' ' d t  

where 

299 

(3.27) 

412 .h2 
_ j l  n j k  m n ~- (g U.Pkm),k Qk - -~ (g & m , l ) , n g , , k  - -  (3.34) 

Schwinger's principle (3.9) allows us to identify the generator 

+ jk rn n 
J = ~ t ~ , g q  J - ~ ( t ) g  r;.r~m (3.35) 

where 

v k = ~k _ (j(t)A k (3.28) 

Lemma 3 (Section 2) becomes 

n k ~ j k r ,  m r ~ n  d ~  ~,kV flm = ½ "k m n ((g7 Pin Fkm),t, vl} - -  (3.29) -" ~; l J n i k m  dt 

where use has been made of the equivalent form of (3.27), namely 

g]lvf l + gmvJ l + gjk d~ = 0 (3.30) 
' ' dt 

Further, using (3.2), (3.11) and (3.22) equation (3.29)becomes 

g k V , l  m _ 1 ]k  m n - ~ {(g F]nFkm),t, 8q z} - (13(t)gJkF~nF~rn) (3.31) 

Using equations (2.27), (2.28) and (3.31), equation (3.25) now may be 
written as 

~ 2  j k  m j R  m n 
C + D - E = - - ~ { ( g  girn,k),t~n - ( g  U.rkm),.,Sq'} 

d "k m n "];t2 
+h2 dt ((3(t)gS PjnFkm) +-~- {Pro, Fro} (3.32) 

However in the appendix it is shown that F n is identical to zero. Thus 
equation (3.14) now becomes 

t '  
t ~r i ({'°< )) - dt -~ 3glk-- 3qk- -Qk ,  6qk (3.33) 

t' 
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and the quantal Euler-Lagrange equation 

d ~L ~L 
Lk = ~/t ac) k - aq k - Qk = 0 (3.36) 

4. Discussion 

We have derived the quantal Euler-Lagrange equation L k = 0 via a variational 
principle in which the variation 6q in the coordinate operator q is given by 

I { ~ L  } 
6q k = aX (q, t) + ~ -~q]q] , l~(t)g ]k (4.1) 

where qk and bL/Ogl k = Pk are canonical conjugate variables. We consider 
this variation, although not quite the most general, in view of the incredible 
clumsiness entailed by the most general form of admissible variation 

1 l 6q k = aX(q, t) + -~ Gig(t, q), (4.2) 

for some symmetric tensor/3/k which satisfies Lemma 2. A detailed calculation 
given elsewheret shows that in the case where A = 0,/3 ix must satisfy the 
constraint 

F s +gSr~!rk(gJrngrn],l),k +grS(~]ml~]rnF~m +~!~F]k),r 

= g/kn(gtm gtj, m),kl3ns -- t3nS(gjkF]mF~, n (4.3) 

where F s is the same functional form as (3.26), but 0 ]k takes the form 

oJkl krn jl ajmRkl (4.4) 

In the above derivation (Section 3), we have proceeded from the equation 

(Lk, ~qk} = 0 (4.5) 

to deduce 

Lk = 0 (4.6) 

Implicit in this step is the lemma proved in a lengthy calculation by Shaharir 
(1974b): 

[L k, 6q k] = 0 (4.7) 

Consequently, it follows from (4.5) that 

L x 6q x = 0 (4.8) 

so that, provided 8qk is non-singular, one may properly deduce equation (4.6) 
(the Euler-Lagrange equation). 

"~ Shaharir (1974b). 
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Even though we have succeeded in formulating a q-number variational 
principle precisely analogous to the Hamilton variational principle, we wonder 
whether such a formulation is the most appropriate basis for quantum 
mechanics. Our personal preference is to dispense with the formal integrals, 
and to assert in lieu of (3.9) the principle that Gauteaux variation 6L is a total 
derivative, i.e. 

d 
6L = ~- J (4.9) 

This starting point leaves the critical parts of the above calculations unchanged. 
In fact, a close examination of the integral expressions raises various points 
which, though no doubt resolvable, are a cause for concern. For example, if one 
naively presumed that the qX were in the Schroedinger picture, it would 
follow that the integrand had no time dependence at all, and the integration, 
especially the integration by parts, would be a mere formal device. 

One unexpected feature of our calculation is that, unlike Schwinger, we find 
that the hermitian operator J in equation (4.9) is not in general simply related 
to that infinitesimal transformational generator G for which 

[qk, G] = ih 6q x 

Consequently, in quantum mechanics on a riemannian manifold, there is not 
a one-to-one correspondence between symmetry transformations and con- 
served currents, i.e. Noether's theorem cannot be stated 'strongly'. This 
conclusion compliments the work of Rosen (1971, 1972) on Noether's 
theorem in classical field theory. 

We should mention that the classical V.P. has a very elegant reformulation 
in the language of differential forms whereby the variation is translated as the 
Caftan (exterior) differential mapping on a symplectic (contact) manifold.t 
However, the extension to quantum mechanics of this coordinate free notation 
would require the development of calculus of exterior differential forms over 
a non-abelian ring, as a 'wedge product' such as dq i A dq e would not be anti- 
symmetric. 

In this paper, we had only discussed the variational principle as applied to 
the action integral (3.6). This may be referred as the 'Hamilton-Schwinger 
q-number Variational Principle'. Elsewhere, one of us (Shaharir, 1974a) has 
presented the action principle which is termed the 'Modified Hamilton- 
Schwinger (Homogeneous) Variational Principle'. It was found possible to 
derive the Hamilton-Heisenberg equations (1.15) via a q-number variational 
principle which is consistent with the one developed here. In addition it was 
shown that the derivation of the canonical commutation relation C.C.R. via 
the method of the Schwinger action principle (1953, 1970) is possible only 
i fgik = 6#:, i.e. for those lagrangians for which Schwinger's c-number varia- 
tional principles can be consistently formulated. 

"~ See, for instance, Hermann (1965). 
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Append i x  

We wish to show that the functional F n defined by equation (3.26), 
Section 3, is identical to zero. It is sufficient to consider 

--n_ t-k 'n .ann ,~k]l.~ m -tcjn F - g m L k ( g  m 0,~ --~;,, u )+gmj ,  kl(g t 0 _ g m n g k j l )  

+ (glkgmj, k), 1 "~m In 

where 

(A.1) 

ff kzn = g,~n gm _ ~ g g m  (A.2) 

The first two terms of (A.1) are equivalent to 
m -kj -kj l n m - "  -- gmj, kOl )),sg s (gn (gzi, kOm +g i,W gJ 

where we have defined 0~ = glm ogjt. But by definition of 0~ and using the 
usual expression ofg/g,l  and ~t k in terms of the Christoffel symbols, Plut, it 
can be shown that 

glj, k'O~ -- gm/,k'Of j = O. 

Thus f in now becomes 
jk -mI n ff.n = (gs],kglmO~,l + (g gmj, k),lO s )gS (A.3) 

Again by definition of 0~, we have 
m g  r jn gsj, kglm'O~,l = (gsj, k -- gsk,j)g 1 (. mrg~,ng ),l 

= (gsj, k -- gsk,j)(gjng~,ll + glmg~,nrgjngmr, l) (A.4) 

Similarly, 

(gik g]m,k),loml = (gitCgim3)(gln gns,rgmr -- gmngns, rglr ) (A.5) 

where use has also been made of the identity 

gift = _g/rggSgrs,, (A.6) 

Simplifying (A.5) further, and applying (A.6) we arrive at 

(gjlC gmj, k ),l Oral = gln gns, r (-g~,l~t - gJlC gmj, kg~l,l r 

+glr gns, r(g~, ~ + gikgrnj, k~,l n) (A.7) 

which is the 'inverse' of (A.4). 
The result follows from (A.3), (A.4) and (A.7). Q.E.D. 
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